
Formation and stability of a singlet optical bipolaron in a parabolic quantum dot

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1996 J. Phys.: Condens. Matter 8 4017

(http://iopscience.iop.org/0953-8984/8/22/006)

Download details:

IP Address: 171.66.16.206

The article was downloaded on 13/05/2010 at 18:23

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/8/22
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter8 (1996) 4017–4029. Printed in the UK

Formation and stability of a singlet optical bipolaron in a
parabolic quantum dot

Soma Mukhopadhyay and Ashok Chatterjee
School of Physics, University of Hyderabad, Hyderabad 500 134, India

Received 22 November 1995, in final form 4 April 1996

Abstract. The stability of a strong-coupling singlet optical bipolaron is studied for the first
time in two- and three-dimensional parabolic quantum dots using the Landau–Pekar variational
method. It is shown that the confining potential of the quantum dot reduces the stability of the
bipolaron.

Much effort has lately gone into exploring and understanding the various physical properties
of ultra-low dimensional semiconductors [1] in which the motion of the charge carriers is
confined in all spatial directions. The realization of such structures is now possible with the
development of many sophisticated micro-fabrication techniques such as molecular beam
epitaxy and nanolithography. These structures are typically of the order of a few nanometres
in size and are usually referred to as zero-dimensional objects or, more technically, as
quantum dots. Because of their fully quantized energy spectra, the quantum dots of polar
semiconductors exhibit many new physical effects [2] which are quite different from their
bulk counterparts and are extremely interesting from the point of view of both fundamental
physics and microelectronic device applications. Consequently, extensive investigations [3]
have been carried out in this area in recent years, both theoretical and experimental, and a
great deal of literature with extremely rich data involving, in particular, electronic properties
has already piled up.

More recently, the role of electron-longitudinal-optical (LO) phonon interaction on
various electronic properties of polar semiconductor quantum dots has been studied by a
number of authors [4] and one of the most important observations that has been made
in this context is that the polaronic effects are extremely important in small dots and
should therefore be taken into account when making devices with them. To our knowledge,
however, nobody has explored the possibility of bipolaron formation in quantum dots. The
purpose of the present paper is to make an attempt in this direction.

A bipolaron is a bound pair of two electrons dressed with a cloud of virtual phonons.
Normally two conduction band electrons would repel each other because of their repulsive
Coulomb interaction, but in polar materials there is an additional interaction between
electrons mediated by virtual phonons which is attractive. If this phonon mediated attractive
interaction can overcome the mutual Coulomb repulsion then the electrons can form a
bipolaronic bound state. This idea was first introduced in the polaron literature by Pekar [5]
in the early fifties and various aspects of the bipolaron have subsequently been investigated
by several authors [6]. The bipolaron problem is interesting for both academic reasons
and for its practical importance in polar semiconductors and semiconducting glasses [7].
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However, above all, the discovery of high temperature superconductivity [8] in CuO2 based
layered ceramic materials and the subsequent proposal of the bipolaronic mechanism [9] for
pairing has made the bipolaron problem most fascinating and has brought it to the forefront
of current research.

For the sake of simplicity in calculation we shall neglect here the size quantization of
phonons and model the relevant phonon modes by the corresponding bulk modes. The same
approximation has also been used by several other authors. For instance, Zhu and Gu (1992)
[4] employed this approximation in their second-order RSPT calculation of the polaron self-
energy and Schmitt-Rinket al [4] and Bockelmann and Bastard [4] have studied the optical
phonon broadening treating the phonons as bulk phonons. The bulk phonon approximation
was also used earlier, quite successfully, in the case of quantum wells [10]. Recently
Fomin and Smondyrev [6] and Kliminet al [11] have shown that interface phonons do
have significant influence on the polaronic phenomena in nanostructures. We therefore
believe that the incorporation of size quantization of phonons and the electron–interface
phonon interaction into our analysis will certainly improve our results, but we expect that
the essential qualitative features will remain more or less the same.

Quantum dots can be fabricated in both two and three dimensions. A quantum dot
embedded in a three-dimensional (3D) material, with the motion of the dot electron confined
in all the three spatial directions, will be called a 3D quantum dot, while that embedded in a
purely two-dimensional (zero thickness) system with the electron’s motion confined in two
spatial dimensions will be referred to as a two-dimensional (2D) quantum dot. Thus, in an
ideal 2D quantum dot the confinement lengths are small but finite in two spatial directions,
while that in the third direction is zero. In reality, however, no systems can be purely 2D,
but if the thickness of the system is much smaller than the confinement lengths in the two
spatial directions, the corresponding dot may be referred to as a quasi-2D quantum dot. In
the present work, our analysis will be restricted to 3D and purely 2D quantum dots. We
shall make anN -dimensional formulation for the sake of generality and obtain results for
both two- and three-dimensional dots as special cases.

The Hamiltonian for a system of two electrons moving in anN -dimensional parabolic
quantum dot and interacting with LO phonons of the system can be written as
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where all vectors areN dimensional. The first two terms refer to the kinetic energy of the
two electrons, the third term to their mutual Coulomb repulsion and the fourth term to the
parabolic confining potential,r′

1 andr′
2 denote the position vectors of the electrons,m their

Bloch effective mass,β the strength of the Coulomb interaction andωpi is the frequency
of the confining potential for the motion in the ith direction. The fifth term describes the
unperturbed phonon Hamiltonian withω0 denoting the dispersionless LO phonon frequency
andb

†
q′ (bq′ ) the creation (annihilation) operator for a phonon of wavevectorq′. Finally the

sixth term gives the interaction of the two electrons with LO phonon field,ξq ′ being the
electron–phonon interaction coefficient for which we shall follow the prescription of Peeters
et al [12]. We shall use the Feynman units in which the energy is scaled by ¯hω0, length
by r0 wherer0=q−1

0 , q0 being an inverse length defined by(h̄2q2
0/m) = h̄ω0, volume byrN

0
and wavevector byq0. Such scalings are equivalent to putting ¯h = ω0 = m = 1. In these
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units, the Hamiltonian (1) reads

H = −1

2
∇2

r1
− 1

2
∇2

r2
+ β

r12
+ 1

2

2∑
j=1

N∑
i=1

ω2
jix

2
ji +

∑
q

b†
qbq +

∑
i

∑
q

[
ξqe−iqri b†

q + h.c.
]

(2)

where
r1 = r′

1/r0 r2 = r′
2/r0 q = q′/q0

β =
(

e2

h̄ω0ε∞

)(
h̄

mω0

)1/2 ωi = ωp,i

ω0

(3)

with the following prescription [12]
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whereVN is the volume of theN -dimensional crystal andα the dimensionless electron–
phonon coupling constant. In what follows we shall consider a symmetric dot so that
ω1 = ω2 = . . . = ωN = ω.

We seek a variational solution of(2) for a singlet bipolaron in the strong-coupling limit
and therefore choose a trial wavefunction of the form

|9BP 〉 = |8(r1, r2)〉 exp
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)]
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wherefq are to be obtained variationally,|0〉 is the unperturbed zero-phonon state satisfying
bq|0〉 = 0 for all q, |ζ 〉 is the antisymmetric spin function for the two electrons corresponding
to the singlet pairing and|8(r1, r2)〉 is a symmetric two-electron wave function which we
write as

|8(r1, r2)〉 = φ(r1)φ(r2)g(r1, r2, |r1 − r2|) (6)

with φ as one-electron functions andg the Coulomb correlation factor. Forφ(r) we try
a Gaussian function and for the correlation factorg we choose a Jastraw type function so
that (6) can be written as
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whereλ and b are variational parameters. Variation of the energyEBP = 〈9BP |H |9BP 〉
with respect tofq yields

fq = −2ξqρq (8)
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The variational energy(EBP ), the size of the bipolaron(RBP ) and the number of virtual
phonons in the bipolaron cloud(NBP ) then take on the following expressions
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wherel = 1/
√

ω and t2 = (λ2 − b)/λ2 is the new variational parameter in place ofb. The
variational parametersλ and t have to be obtained numerically by solving the following
equations

∂EBP

∂λ
= 0

∂EBP

∂t
= 0. (13)

It may be noted that equation (10) reduces to the GS energy of a corresponding strong-
coupling bulk bipolaron (Chatterjee and Sil (1993) [6]) in the limit l → 0 which is expected
in view of the correspondence principle. To obtain the stability criteria we have to find out
the binding energy (BE) of the bipolaron which is given by

BE = 2EP − EBP (14)

where EP is the single polaron GS energy in the same approximation. For the sake of
completeness we now briefly present our calculation for the quantum dot polaron problem
which can be described in Feynman units by the Hamiltonian
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where the notations have exactly the same meaning as in(2) for a symmetric dot. In the
strong-coupling approximation the polaron wave function for the GS may be chosen as
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whereµ, andgq are variational parameters. Minimization ofEP = 〈9P |H |9P 〉 with respect
to gq can be done analytically to obtain
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and thus the variational energyEP assumes the following expression
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whereµ has to be obtained numerically from

∂EP

∂µ
= 0. (19)

It may again be noted that equation (18) assumes the Landau–Pekar expression for
the bulk polaron in the limitl → ∞. We have performed numerical calculations for the
binding energy (BE) and the size(RBP ) of the bipolaron and for the number of virtual
phonons(NBP ) in the bipolaron cloud for both 2D and 3D dots. We have also determined
the bipolaron stability criteria which are obtained by demanding that the binding energy
of the bipolaron be positive. We find that binding energy of a strong-coupling bipolaron
in a quantum dot depends on two parameters. These parameters areη = ε∞/ε0 and the
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confinement lengthl. In figure 1 we show the variation of the bipolaron binding energy
(BE) as a function ofl for a few values ofη (η = 0.01, 0.05, 0.1) for a 3D quantum
dot. It is clear that the binding energy decreases with the decrease in the confinement
length l. The variation is extremely rapid below a certain value of the confinement length
and indeed the bipolaron becomes unstable ifl is made smaller than a critical valuelc.
At such confinement lengths a bipolaron breaks up into two individual polarons. The
reason for this instability of the bipolaron is not difficult to understand. The decrease in the
confinement length of the dot potential will lead to an enhancement in the average Coulomb
repulsion between the electrons. When this Coulomb repulsion increases considerably
with a corresponding significant decrease in dot size, it may then dominate the phonon
mediated attractive electron–electron interaction, thereby inhibiting the formation of stable
bipolarons. However, whenl is large, the bipolaron binding energy does not change much
with l and hence the bipolaron stability becomes more or less independent ofl. This is
essentially the bulk limit. One may furthermore observe from figure 1 that the bipolaron
binding energy increases with a decrease inη, which is again not quite unexpected. Since
η = (1 − (

√
2α/β)) for a given value ofα, a decrease inη means a decrease inβ, and

hence a decrease in the strength of the electron-electron Coulomb repulsion, which in turn
implies an increase in the effective electron–electron attractive interaction. Thus a decrease
in η would lead to an enhancement in the bipolaron binding energy favouring the formation
of stable bipolarons. Figure 2 shows the variation of the binding energy of the bipolaron
with l for η = 0.01, 0.05 and 0.1 for a 2D quantum dot. The variations are qualitatively
similar to those observed in 3D dots. Quantitatively however, the polaronic interactions
are stronger in 2D than in 3D and consequently, for the same value ofη, the bipolaron
binding energy is larger in a 2D dot than in its 3D counterpart. Naturally, for a given value
of η the critical confinement lengthlc is smaller for a 2D quantum dot than that for the
corresponding 3D dot. In figures 3 and 4 we show explicitly the behaviour of the binding
energy of a bipolaron as a function ofη for a few values ofl. As expected, BE decreases
asη increases and thus for a given value ofl, η has to be smaller than some critical value
ηc for the bipolaron to be stable. It is clear that the value ofηc increases with increasingl.
Comparison between figures 3 and 4 shows that for a given confinement lengthηc is larger
for a 2D quantum dot than that for the corresponding 3D dot. One interesting observation
that one can make from figure 3 is the crossing of binding energy curves corresponding to
l = ∞ and l = 0.447 at a small value ofη. The physical explanation of the crossing is
not completely clear. Interestingly however, this crossing is not present in the case of 2D
quantum dots.

In figure 5 we plot the bipolaron radius(RBP ) as a function ofl for η = 0.01, 0.05
and 0.1 for a 3D quantum dot. The corresponding results for a 2D dot are shown in figure
6. Again the results for the 2D and 3D dots are qualitatively similar. The bipolaron size
increases quite rapidly withl at small values ofl. The variation is however very slow when
l is large. This is quite interesting behaviour, and is opposite to what is observed in the
bulk bipolaron problem where a large binding energy is associated with a smaller radius of
the bipolaron. Furthermore we find that, for a given value ofl, the bipolaron size increases
with η, which is expected. However, if the confinement length is sufficiently small, theη

dependence of the bipolaron radius becomes essentially insignificant. Comparison between
figures 5 and 6 shows that the radius of a strong-coupling bipolaron is smaller in a 2D
quantum dot than that in the corresponding 3D dot.

Figures 7 and 8 give the plots of the number of virtual phonons(NBP ) in the bipolaron
cloud in 2D and 3D quantum dots respectively. Here we also find that, for the same values
of η and l, NBP is much larger in a 2D dot than in a 3D dot. In both cases we find that
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Figure 1. Binding energy of the bipolaron (BE) (in Feynman units) as a function of the
confinement lengthl (in Feynman units) for different values ofη (η = 0.01, 0.05, 0.1) in a
3D quantum dot.

Figure 2. Binding energy of the bipolaron (BE) (in Feynman units) as a function of the
confinement lengthl (in Feynman units) for different values ofη (η = 0.01, 0.05, 0.1) in a
2D quantum dot.
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Figure 3. Binding energy of the bipolaron (BE) (in Feynman units) as a function ofη for
different values of the confinement lengthl (in Feynman units) in a 3D quantum dot.

Figure 4. Binding energy of the bipolaron (BE) (in Feynman units) as a function ofη for
different values of the confinement lengthl (in Feynman units) in a 2D quantum dot.

NBP decreases quite rapidly with increasingl when l is small. Whenl exceeds a certain
value the decrease ofNBP with l becomes extremely slow, eventually saturating to the bulk
value. It may again be noted here that in the conventional bipolaron problem (in a bulk
crystal), a reduction inNBP is associated with a decrease in the binding energy, which is
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Figure 5. Size of the bipolaronRBP (in Feynman units) as a function of the confinement length
l (in Feynman units) for different values ofη (η = 0.01, 0.05, 0.1) in a 3D quantum dot.

Figure 6. Size of the bipolaronRBP (in Feynman units) as a function of the confinement length
l (in Feynman units) for different values ofη (η = 0.01, 0.05, 0.1) in a 2D quantum dot.

quite opposite to what we observe here. For a givenl, however, the number of phonons in
the bipolaron cloud are found to increase withη which is, of course, expected behaviour.

In figures 9 and 10 we show the variation ofηc explicitly as a function of the confinement
length for 3D and 2D dots respectively. The figures show that in both casesηc rises very



Formation of an optical bipolaron in a quantum dot 4025

Figure 7. Number of phonons in the bipolaron cloudNBP (in Feynman units) as a function of
the confinement lengthl (in Feynman units) for different values ofη (η = 0.01, 0.05, 0.1) in
a 3D quantum dot.

Figure 8. Number of phonons in the bipolaron cloudNBP (in Feynman units) as a function of
the confinement lengthl (in Feynman units) for different values ofη (η = 0.01, 0.05, 0.1) in
a 2D quantum dot.
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Figure 9. ηc as a function of the confinement lengthl (in Feynman units) in a 3D quantum dot.

Figure 10. ηc as a function of the confinement lengthl (in Feynman units) in a 2D quantum
dot.
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rapidly with l at small l and then saturates to the corresponding bulk value. One may
furthermore observe that stable bipolarons can indeed exist, even in a sufficiently small dot,
if the value ofη for such a dot is smaller than a certain critical valueηc(l). However, since
ηc(l) is always less thanηc (l → ∞), the bipolaronic stability criteria are, in general, less
favourable in quantum dots than in bulk crystals.

In conclusion, we have investigated the possibility of formation and stability of
a bipolaron in two- and three-dimensional symmetric quantum dots with parabolic
confinement. We have shown that the bipolaron binding energy decreases with the decrease
in the confinement length in both two- and three-dimensional dots and below a certain
critical value of the confinement length(lc) which depends onη and the dimensionality of
the dots, a bipolaron becomes unstable and breaks up into two individual polarons. We
have furthermore shown that there also exists a critical value ofη(ηc) (depending on the
confinement length and the dimensionality of the dot) below which the GS of a strong
electron–phonon system is a bipolaronic state. However,ηc(l) is less thanηc(∞) for any
finite value ofl and therefore the bipolaronic stability criteria are apparently less favourable
in quantum dots than in bulk crystals. The present analysis however neglects the size
quantization of phonons and the effect of interface phonons. The electron–interface phonon
coupling will give rise to another phonon mediated attractive interaction which will also
favour the bipolaron formation and may enhance the stability region of the bipolaron. Thus
we expect that the incorporation of interface phonons will make the bipolaron stability
criteria a little more favourable than that obtained from our present calculation. The role
of size quantization and the electron–interface phonon interaction on the bipolaron stability
will be investigated quantitatively in a forthcoming paper.
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